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AbstractÐA new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical

clustering model, the Cahn Hilliard model, which describes phase separation, is modified to reflect the properties of the data to be

visualized. Clusters are defined implicitly as connected components of the positivity set of a density function. An evolution equation for

this function is obtained as a suitable gradient flow of an underlying anisotropic energy functional. Here, time serves as the scale

parameter. The evolution is characterized by a successive coarsening of patternsÐthe actual clusteringÐduring which the underlying

simulation data specifies preferable pattern boundaries. We introduce specific physical quantities in the simulation to control the shape,

orientation and distribution of the clusters as a function of the underlying flow field. In addition, the model is expanded, involving elastic

effects. In the early stages of the evolution shear layer type representation of the flow field can thereby be generated, whereas, for later

stages, the distribution of clusters can be influenced. Furthermore, we incorporate upwind ideas to give the clusters an oriented drop-

shaped appearance. Here, we discuss the applicability of this new type of approach mainly for flow fields, where the cluster energy

penalizes cross streamline boundaries. However, the method also carries provisions for other fields as well. The clusters can be

displayed directly as a flow texture. Alternatively, the clusters can be visualized by iconic representations, which are positioned by

using a skeletonization algorithm.

Index TermsÐFlow visualization, clustering, Cahn-Hilliard, multiscale, nonlinear diffusion, finite elements, skeletonization.
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1 INTRODUCTION

TODAY, fast computing hardware and efficient numerical
algorithms enable highly detailed and large scientific

simulations which deliver enormous amounts of data.
Various visualization strategies have been proposed to
represent such data in an intuitively understandable way.

The larger and more complex the simulation results

become, the stronger is the need for a suitable multiscale

visualization approach. Simplified representations of the

data, useful for seeing the global pattern, can be gradually

refined for further insight. Moreover, different viewers

need different representations. Numerical experts might

want to see the raw data in full detail, technological experts

might want to see certain features such as vortices, whereas

management might need a simplified presentation.
Clustering, well-known from statistics, is such a multi-

scale approach. Data are grouped in successively larger sets

of strong internal correlation. Many techniques are available

for scattered and scalar data, e.g., based on wavelet or

Fourier analysis [12], [28]. However, for vector data, only a

few multiscale visualization methods are available. The

most ubiquitous vector field simplification method is still

regular subsampling, which is well-known for producing

aliases (see, e.g., Fig. 1). Turk and Banks [25] use an energy
minimizing approach to place equally distributed stream-
lines at a user prescribed resolution on the screen. Selected
streamline drawings are furthermore considered by Jobard
and Lefer [10].

Recently, two approaches for clustering vector data have
been proposed. In both approaches, a hierarchical clustering
tree is produced and the resulting clusters are visualized
with arrows. Heckel et al. [9] start from scattered points
with vector data. Initially, all points are stored in a single
cluster, which is recursively split in a top-down manner. At
each step, the cluster with the strongest discrepancy
between streamlines generated by the original field and
its approximation by the cluster is bisected with a plane,
using principal component analysis. The resulting clusters
are guaranteed to be convex as a result of this bisection
approach. However, accurately representing complex fields
with convex clusters may require a large cluster count.

Telea and Van Wijk [23] use a bottom-up approach.
Initially, each data point is a cluster; next, these clusters are
merged. In each step, the most similar clusters are merged,
according to a measure of the difference in position and
orientation of the vectors that represent the clusters. The
cluster shapes are constrained only indirectly by adapting
the weights of the various terms in the error measure.
However, this method is sometimes sensitive to the
mentioned weight tuning.

Here, we propose a continuous clustering method based
on a phase separation model which leads to a diffusion
problem. The main difference to the other approaches is
that no Boolean merging or splitting decisions have to be
made. Instead, a suitable diffusion process continuously

230 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 7, NO. 3, JULY-SEPTEMBER 2001

. H. Garcke, T. Preuûer, M. Rumpf, and U. Weikard are with the Institute
for Applied Mathematics, University of Bonn, Wegelerstrasse 6, 53115
Bonn, Germany. E-mail: {harald, tpreuss, rumpf, wkd}@iam.uni-bonn.de.

. A. Telea and J. van Wijk are with the Department of Mathematics and
Computer Science, Eindhoven University of Technology, Den Dolech 2,
5600 MB, Eindhoven, The Netherlands.
E-mail: {alext, vanwijk}@win.tue.nl.

Manuscript received 30 Mar. 2001; accepted 7 May 2001.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 114133.

1077-2626/01/$10.00 ß 2001 IEEE



enhances strong correlations in the cluster sets. In contrast
to Heckel's method, the clusters that we generate are not
necessarily convex. Hence, curved flow fields can be
represented more effectively. Fig. 1 shows two vector fields
visualized with the classical hedgehog plot (left) and with
two variants of our method (right).

Our approach is motivated by a well-known physical
model for phase separation in binary alloys which can be
understood as a clustering of material in order to decrease
the free energy of the physical system. As a major
application, we consider clustering on flow fields. The
method is related to multiscale image processing methodol-
ogy which leads to second order parabolic equations,
whereas our model here will be a fourth oder problem.
Perona and Malik [17] have introduced a continuous
diffusion model which allows the denoising of images
together with edge enhancing. The recovery of lower
dimensional structures in images is analyzed by Weickert
[27], who introduced an anisotropic nonlinear diffusion
method where the diffusion matrix depends on the so-
called structure tensor of the image. Preuûer and Rumpf
presented an efficient implementation for large scale image
data [19] and used an anisotropic diffusion approach for
flow visualization [20].

In detail, the aims of our method are:

. to extract a collection of nicely shaped subsets of the
physical domain, where each of them is being
characterized by a strong correlation in the under-
lying physical data and all together are supposed to
cover an approximately fixed fraction of the domain,

. to consider not only one such representation, but a
scale of them, ranging from fine granularity in the
subdivision to very few and coarse cluster sets.

This multiscale should enable the exploration of compli-
cated simulation data and the visual perception of correla-
tions in such data sets at different resolutions. In our model,
the clusters will be represented implicitly by a scalar
function evolving in time. In addition, we expand the
model, incorporating a contribution to the energy due to
elastic effects. We are thereby able to influence the

distribution of the particles and, for small evolution timesÐ
not yet in the range of the actual clustering resultsÐwe
obtain images which show shear layer type patterns.
Furthermore, we use an upwind idea to obtain drop-shaped
particles which clearly outline the flow field direction.

Concerning the graphical representation, we could
straightforwardly use a color coded representation of this
function on the physical domain as a texture. In the last
decade, a variety of such texturing methods have been
presented for flow visualization. We mention here the spot
noise technique by de Leeuw and Van Wijk [5], the line
integral convolution method by Cabral and Leedom [2],
several improvements and modifications of this method
[29], [7], [21], and the already mentioned nonlinear
anisotropic diffusion method [20]. As an alternative to the
above, we use the actual clustering as a precomputing step
and pipe the output into an iconic representation approach.
Thus, the distinct subsets at any scale are represented by
suitable graphical icons. This allows a further reduction of
graphically represented data while maintaining and
strengthening the informational content.

The ingredients of our continuous clustering strategy are
as follows:

. We formulate an evolution problem for a function
which implicitly describes the set of clusters. The
evolution can be interpreted as the gradient flow
with respect to an appropriate energy.

. There are two major energy contributions. The first one
leads to the nucleation of cluster sets on the physical
domain. The second one gives rise to a successive
coarsening of the clusters.

. Depending on the underlying physical data, surface
segments are weighted depending on their location and
orientation. That is, surfaces are considerably pena-
lized if they are oriented in cross direction to the
correlation; otherwise, their energy contribution is
kept small. Several energy components can be
defined to constrain the clusters' shapes in relation
to various quantities in the flow dataset.

. On any scale, a skeletonization method is used to
reduce the informational content of the cluster sets to
their essence, which is to be further visualized.

. Finally, geometric icons are selected to represent the
extracted skeleton information graphically, e.g., with
arrows in the case of vector data.

Let us emphasize that the actual physical data enter the
clustering method only via the anisotropic energy. More-
over, the evolved function is solely used to define the
cluster sets without any further physical meaning.

As application, we mainly consider flow fields, where
the concept of correlation along streamlines is near at hand.
Nevertheless, the methodology is not restricted to flow
visualization and is thus presented here for more general
data.

The organization of the paper is as follows: In Section 2,
we outline the physical model of phase separation in binary
alloys which motivates this work. Section 3 extends this
model by taking into account physical elasticity. In Section 4,
we expand this model and interpret it in terms of a
multiscale cluster analysis. In Section 5, we describe how
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Fig. 1. Vector field visualization: hedgehog plots (left), proposed

clustering methods (right).



the cluster shape can be controlled to visualize the direction
of a vector field. Section 6 discusses how anisotropic
elasticity can be used to visualize shear layer type patterns.
A finite element discretization is described in Section 7. In
Section 8, the skeletonization approach is outlined and we
discuss graphical icons in case of vector data. Finally, in
Section 9, we discuss the results and, in Section 10, we draw
conclusions.

2 REVIEWING A PHYSICAL CLUSTERING MODEL

Before we discuss our model of continuous clustering on
simulation data we will review in this section a physical
model for clustering in metallic alloys, which goes back to
Cahn and Hilliard [3]. The Cahn-Hilliard model was
introduced to describe phase separation and coarsening in
binary alloys. Phase separation occurs when a uniform
mixture of the alloy is quenched below a certain critical
temperature beneath which the uniform mixture becomes
unstable. As a result, a very fine microstructure of two
spatially separated phases with different concentrations
develops. In later stages of the evolution, on a much slower
time scale than the initial phase separation, the structures
become coarser: either by merging of particles or by
growing of bigger particles at the cost of smaller ones. This
coarsening can be understood as a clustering, where the
system mainly tries to decrease the surface energy of the
particles, which leads to coarser and coarser structures
during the evolution. In the basic Cahn-Hilliard model, this
surface energy is isotropic. There are no preferred direc-
tions of the interfaces. Hence, the particles tend to be ball-
shaped (cf. Fig. 2).

We now briefly outline the basic ideas of the Cahn-
Hilliard model. For more details we refer to the review
papers by Elliott [6] and Novick-Cohen [15]. The Cahn-
Hilliard model is based on a Ginzburg-Landau free energy,
which is a functional in terms of the concentration
difference � of the two material components. The Ginzburg-
Landau free energy E is defined to be

E��� :�
Z




	��� � 

2
jr�j2

n o
;

where 
 is a bounded domain. The first term in the free
energy, 	���, is the chemical energy density and typically
has a double well form. In this paper, we take

	��� � 1

4

ÿ
�2 ÿ �2

�2

with a constant � 2 �0; 1� (cf. Fig. 3). We note that the system
is locally in one of the two phases if the value of � is close to
one of the two minima �� of 	. The diffusion equation for
the concentration � is given by

@�

@t
� �w

on IR� � 
. In the equation above, we denote by w the local
chemical potential difference which is given as the varia-
tional derivative �E

�� of E with respect to � (cf. Section 4).
Thus, we obtain

w � ÿ
���	0���:
The system has to be supplemented with boundary and
initial conditions. Here, we request @

@� w � @
@� � � 0, where �

is the outer normal on @
 and ��0; �� � �0��� for some initial
concentration distribution �0. We remark that, with these
boundary conditions, mass is conserved and that the
Ginzburg-Landau free energy is a Lyapunov functional,
i.e., we have

d

dt

Z



��x; t�dx � 0 and
d

dt
E ��t�� � � 0:

Starting with a random perturbation of a constant state ��0,
which has values in the unstable concave part of 	, we
observe the following: In the beginning, the chemical
energy decreases rapidly, whereas the gradient energy
increases. This is due to the fact that, during phase
separation, � attains values which are, at large portions of
the domain, close to the minima of the chemical energy 	.
Since regions of different phases are separated by transition
zones with large gradients of �, the gradient energy
increases during phase separation. In the second stage of
the evolutionÐthe actual clusteringÐwhen the structures
become coarser, the total amount of transition zones
decreases. Correspondingly, the amount of gradient energy
becomes smaller again.

3 INCLUDING ELASTICITY

Elastic stresses play an important role during phase
separation in most alloys. Such stresses arise from an
elastic energy which takes into account elastic interactions
due to different crystal structures. The free energy E can be
defined as a function of the concentration � and the
displacement field u, as follows:

E��;u� :�
Z




 ��� � 

2
jr�j2 �W ��;u�

n o
dx:

The third term accounts for an energy contributions
due to elasticity. We consider linear elasticity and
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Fig. 2. Three timesteps of the original Cahn-Hilliard evolution.

Fig. 3. Chemical energy as function of concentration.



obtain W��;u� :� �E�u� ÿ �E���� : C�E�u� ÿ �E����, where
E�u� :� 1

2 ru� �ru�tÿ �
. Here, C is the possibly anisotropic

elasticity tensor and the term �E��� is the stress free strain at
a concentration � given in the simplest model by �E��� �
e � Id with a material constant e. The product A : B of two
d� d matrices A;B is defined to be

Pd
i;j�1 AijBij.

Thus, the resulting diffusion equation introduced in
Section 2 has to be modified. We obtain, for the chemical
potential,

w � ÿ
���  0��� ÿ S : �E0��� in 
T ; �3:1�
where

S � C�E�u� ÿ �E����
is the stress tensor. Fig. 4 shows three timesteps from a
diffusion process that takes anisotropic elasticity into
account.

Since the relaxation into mechanical equilibrium occurs
on a time scale that is fast compared to the time scale at
which diffusion takes place, we assume quasistatic equili-
brium for the deformation. Hence, we obtain the mechan-
ical equilibrium condition div S � 0.

4 A MULTISCALE CLUSTERING APPROACH

The aim of this section is to derive a continuous
clustering model mainly on flow data. Motivated by the
Cahn-Hilliard model for phase separation and particle
coarsening (cf. Section 2), we introduce a cluster
mapping, u : IR�0 � 
! IR, which will be the solution of
an appropriate evolution problem. Time will thereby serve
as the scale parameter leading from fine cluster granularity
to successively coarser clusters. For fixed time t, our
definition of the set of clusters C�t� is founded on the
function u by

C�t� � fx j u�t; x� � 0g:
This set splits up into the actual clusters

C�t� �
[
i

Ci�t�;

where fCi�t�gi are the connected components of C�t�.
Now, we study the evolution problem which controls the

quantity u. We suppose this evolution to be a suitable
clustering model, if, for the induced C�t�:

. The number of clusters generically decreases in time,

. The shape of the cluster components strongly
corresponds to correlations in the data field,

. The volume fraction covered by C�t� is approxi-
mately constant in t, i.e., jC�t�jj
j � � for � 2 �0; 1�.

We pick up the physical Cahn-Hilliard model and
consider a double well separation potential 	�u� and define
a separation energy Es �

R

 es�u�dx with energy density

es�u� � 	�u�. Under all u with
R


 udx � �u0 � const:, the
energy Es is minimal if u attains only the values ��.

This leads to a binary decomposition of the domain into
two parts, where one part corresponds to fx j u�x� � �g.

The set fx j u�x� � �g, however, can have many con-
nected components and may even be very unstructured.
Furthermore, there is no mechanism which enforces a
successive coarsening and, thus, a true multiscale of
clusters. Therefore, we want to introduce a term penalizing
the occurrence of many disconnected cluster components
with high interfacial area. Motivated by the Cahn-Hilliard
theory of phase transition, we choose a gradient energy
E@ �

R

 e@dx with local energy density e@ that penalizes

rapid spatial variations of u.
In order to have the flexibility to choose an anisotropic

and inhomogeneous gradient energy, an appropriate
definition of an interfacial energy density is given by

e@�ru� � 

2
Aru � ru;

where ª�º denotes the scalar product in IRn, 
 is a scaling
coefficient, and A 2 IRn�n is some symmetric positive
definite matrix that may depend on the space variable
and other quantities involved.

In the following, we will call the set @fx j u�x� � 0g the
interface. The orientation of the interface can be described
by the normal to the interface, which, in the case that
ru 6� 0, is given by

� � ru
kruk :

We remark that the interface between the set of positive
and negative values of u is perpendicular to �. For A � Id,
all gradients of u and, hence, all interfaces are penalized
equally independent of their orientation. With respect to
our clustering intention, we consider an anisotropic energy
density which strongly depends on the orientation of the
local interface and, thereby, on the direction of ru.

Let us assume v : 
! IRn to be some vector field on the
domain 
. Typically, such a field induces a flow on 
 with
streamlines which are the solution of the ordinary differ-
ential equation _x � v�x�. Now, a natural clustering should
emphasize the coherence along the induced streamlines.
Thus, cross streamline interfaces have to be penalized
significantly by the gradient energy. We choose

A :� B�v�T 1 0
0 ��kvk�Idnÿ1

� �
B�v�;

where Idnÿ1 is the identity mapping in IRnÿ1 and, for given
r 2 IRn, the mapping B�r� 2 SO�n� is a coordinate rotation
with B�r�r � krke1. Since interfaces that cross streamlines
have to have larger energy, we choose a positive � with
� � 1.

Now, we define the first variation of the energy

w � �E
�u
;
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Fig. 4. Three timesteps of a Cahn-Hilliard process including anisotropic

elasticity.



which is defined on 
 byZ



�E

�u
�dx :� d

d�
E�u� ���

���
��0
:

We obtain w � 	0�u� ÿ 
 div�Aru�.
Let us assume that the evolution of the cluster mapping u

is governed by diffusion, where the corresponding flux
linearly depends on the negative gradient of the first
variation of energy. As the simplest model, we choose
@tuÿ�w � 0, and end up with the following fourth order
parabolic problem: Find a continuous cluster mapping u :
IR�0 � 
! IR such that

@tuÿ�w � 0 �4:1�

w � 	0�u� ÿ 
 div�Aru� �4:2�
with boundary conditions @

@� u � @
@� w � 0 and prescribed initial

data u�0; �� � u0���.
This modified Cahn-Hilliard equation can be interpreted

as the Hÿ1 gradient flow for the energy E (see [15] for a
discussion of this fact in the case of the standard Cahn-
Hilliard equation). In particular, we immediately obtain the
Lyapunov property

@tE�u� � 0: �4:3�
This energy decay is in fundamental accordance to the
desired successive pattern coarsening in the evolution.
After an initial short period of phase separation, it is mainly
the interfacial energy contribution which is successively
reduced. Furthermore, as in the case of the standard Cahn-
Hilliard equation, we obtain that

R

 u�x; t�dx is constant in

time, which corresponds to the approximate volume
conservation of the generated scale of cluster sets.

In general, it does not make sense to consider certain
initial data if no a priori information on the clustering is
known. As initial data u0, we thus choose a constant value
�u0 plus some small random noise. The constant �u0 depends
on the volume fraction � of the domain later on being
covered by the clusters, i.e., by the sets fx j u�t; x� � 0g.
Therefore, we choose

�u0 � �� ÿ �1ÿ���:
Starting with a random perturbation of this constant first,

cluster patterns will grow very rapidly without any
prescribed location and orientation. This is in order to
decrease Es �

R

 	�u�, which forces the solution to obtain

values close to �� in most of the domain 
. After this
process, the clusters orient themselves in an anisotropic
way to decrease the amount of the anisotropic gradient
energy E@ . In addition, the cluster becomes coarser and
coarser due to the fact that smaller particles shrink and
larger ones grow. We remark that, in particular, one
observes that a large particle that is surrounded by smaller
ones grows at the expense of the smaller ones. This implies
that, as time evolves, locally, only the main features of the
clusters will be kept.

Altogether, we obtain a scale u�t; �� of cluster mappings
and induced cluster sets C�t�. They represent a successively
coarser representation of simulation data and continuously

enhance coherences in the underlying simulation data set,
where the cluster set C�t� will cover a volume of approx-
imate size �j
j. As already mentioned, the multiscale
property comes along with the decay of the energy E�u�
(see (4.3)).

To summarize, the vector field that is to be repre-
sented defines the anisotropy of the energy and therefore
governs the diffusion process of u. Roughly speaking, the
vector field determines in which direction an interface
between phases is relatively ªcheapº (from an energy
point of view). As the energy is minimized during the
evolution, the interfaces will move in such a way that
there are mostly ªcheapº interfaces (i.e., interfaces where
ru is roughly perpendicular to v, which means that the
interface is roughly parallel to v). So, for any particle,
most of its boundary will be aligned with the vector field
v. If not too large, the particles themselves will be aligned
to the vector field. Fig. 5 shows the result of this process
and the influence of increasing anisotropy in the surface
energy term.

5 CONTROL OF PARTICLE SHAPE

The results presented in Fig. 5 are quite similar to the
various flow texture methods known in the literature [5],
[2], [29], [7], [21]. Given a good scale choice, such images
could be used on their own to give insight in a 2D flow
field. However, such images convey only the orientation,
but not also the direction, of a flow field. This limitation has
been recognized by Wegenkittl et al. [26], who have
presented several methods to emphasize direction in LIC
algorithms. One method to convey directional information
via iconification is further presented in Section 8. In this
section, we discuss an alternative method that adds
directional information directly into the continuous cluster-
ing model.

Our aim is to create interfaces that are asymmetric with
respect to the flow field's direction. We divide such an
interface into two regions, depending on the angle between
the interface's surface normal and the flow field, i.e., the
quantity ru � vjvj (see also Fig. 7). In the front half, defined by
ru � vjvj < 0, the energy is as described in the previous
section. In the back half, defined by ru � vjvj > 0, we define an
additional shape energy term, Es, as a function of the angle
between the local gradient ru and the flow field v:
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Fig. 5. Continuous clustering of a vector field: time evolution (upper row),

effect of increasing anisotropy (lower row). The computation is based on

a grid of resolution 2572.



Es�u� �
Z




q



2
max ru � vjvj ; 0

� �2

:

The coefficient q defines the importance of this additional

shape energy Es in the global energy, thus the intensity of

this effect in the final visualization. The shape energy thus

penalizes only the back halves of the clusters, decreasing

the value of u in these areas. Indeed, the clusters try to

avoid back sides whose normals point in the upwind

direction. If the function u is directly visualized by a color

plot, the perceived effect suggests drops of fluid trans-

ported by the underlying vector field v. Fig. 8 shows this

effect for a single, respectively, several particles, in a

circular vector field.
Fig. 6 shows several time steps in the visualization of a

more complex flow field. Fig. 9 illustrates the effect of the

additional energy term Es on the particle shape by showing

a closeup for a timestep of the above sequence. The above

images are similar to the fur-like textures for flow

visualization presented in [16]: The flow field's direction

is suggested by the fading away of the ªtailº of the particles.

However, whereas the cited method generates sharp,

arrow-shaped particles that point in the direction of the

flow field, we generate blunt, drop-like particles that point

in the opposite direction.
Corresponding to the above additional energy term, the

first variation of the energy wÐwhich we have to build into

our diffusion problemÐis now defined by:

w � 	0�u� ÿ 
 div�Aru� ÿ 
div~v;

where

~v :� q
ÿ�ru � v� vjvj �; if ru � v > 0;

0; if ru � v � 0:

�

6 STRESS-DRIVEN DIFFUSION

Now, let us discuss the extension of our clustering model
based on elastic stresses. We choose an anisotropic elasticity
which is strongly correlated with the flow field. Hence, we
define a modified strain

E�~u� :� BT �v�E�~u�B�v�;
a correspondingly modified stress:

S � CBT �v��E�u� ÿ �E�u��B�v�;
and the appropriate modified elastic energy:

W�u;u� �
 
BT �v� E�u� ÿ �E�u�ÿ �

B�v�
!

:

C
 
BT �v� E�u� ÿ �E�u�ÿ �

B�v�
!
:

Again, the rotation B�v� is used to transform the flow
aligned coordinate system to the canonical coordinate
frame. With the modifications presented above, the elasti-
city tensor is defined in such a way that the flow direction is
the preferred stretching direction.

Incorporating anisotropic elasticity leads to interesting
images already in the early clustering stages. These images
are related to the shear zones of the flow field. For later
times, the resulting clustering tries to avoid the crossing of
high shear regions. Fig. 10 illustrates the above effects for
the vector field discussed in Section 5.

It is sometimes convenient to choose u-dependent
elasticity tensors C�u� in such a way that the particles have
larger elasticity constants, i.e., the particles are harder than
the surrounding matrix. In this setting, already in the case
of an isotropic elasticity independent of a vector field, we
recognize significant chances in the behavior of our method:
The cluster distribution tends to be more uniform.
Furthermore, independent of the initial volume fraction, it
is always the harder phase which forms the clusters,
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Fig. 6. Vector field visualization with control on particle shape (different time scales).

Fig. 7. Control of particle shape.

Fig. 8. Constant vector field, single particle (left). Circular vector field

(right).



whereas the softer phase builds the surrounding matrix. In
conclusion, elasticity can be used for two goals. First, it can
produce cluster-based visualizations of shear layer type
data. Second, it can be used as a global control for the
cluster size distribution.

7 DISCRETIZATION OF THE DIFFUSION PROBLEM

In what follows, we briefly discuss the discretization and
implementation of the evolution problem for the cluster
mapping u and the set of clusters C�t�. For this purpose, a
finite element discretization in space and some discrete
scheme in time are considered. Here, uppercase letters
denote discrete quantities which correspond to continuous
quantities in lowercase letters. Hence, we consider an
appropriate continuous variational formulation for (4.1),
(4.2), given by

@tu; �� � � rw;r�� � � 0;

w; �� � � 	0�u�; �� � � Aru;r�� �;
which shall hold for all �; � 2 C1��
�, where ��; �� denotes the
L2 product on the domain 
. For a finite element
implementation, we now replace the continuous solution
and test functions in this formulation by discrete approx-
imations in some finite element space. Here, we have
restricted ourselves to finite elements on regular adaptive
gridsMh in 2D and 3D generated by recursive subdivision
of elements E. On these grids, we consider the bilinear,
respectively, trilinear, finite element spaces V h for the
approximation of u and w on 
. Numerical integration of
the L2 products is based on the lumped masses product
��; ��h [24]. Furthermore, we consider a center of mass
quadrature rule for the bilinear forms �r �;r �� and
�Ar �;r ��. Especially, we replace A by the piecewise
constant diffusion tensor Ah, with AhjE � A�cE�, where cE
is the element's center of mass.

For the discretization in time, we have taken into account
two possibilities: a first order implicit Euler scheme and a
second order �-splitting scheme (see Bristeau et al. [1] and
MuÈ ller-Urbaniak [14]). Both are known to be strongly
A-stable. While we can prove the energy decay property
(4.3) for the implicit Euler scheme, we use the �-splitting for
practical computations as it allows larger time steps.

In the case of the implicit Euler scheme, the time
derivative is discretized by @tu��n� 1��� � Un�1ÿUn

� , where
� is the selected time step and Un an approximation of
u�n��. A brief introduction to the more complicated
�-splitting can be found in the Appendix.

Finally, we can derive a fully discrete scheme. For the

ªhat-shapedº multilinear basis functions �i and the discrete

piecewise constant anisotropic diffusion matrix Ah, we

define, by

Mh :� ��i;�j�h
ÿ �

ij
;

Lh�A� :� �Ahr�i;r�j�
ÿ �

ij
;

the diagonal lumped mass and the anisotropic stiffness

matrix, respectively, and, by Lh :� Lh�Id�, the standard

stiffness matrix. These global matrices Mh, Lh, and Lh�A�
are assembled in a grid traversal collecting the contribu-

tions on all local grid elements as is standard in finite

element programming [4].
If we indicate by a bar coefficient vectors corresponding

to finite element functions in the basis f�igi, we obtain the

backward Euler discretization

Mh
�Un�1� �Lh��	0� �Un�1��


Mÿ1
h Lh�A� �Un�1� �Mh

�Un

with U0 � Ihu0, where Ih is the interpolation on grid Mh.

By obvious notation, �	0��� :� �	0����i is the vector of nodal

wise derivatives of 	.
In each step of the discrete evolution, we have to solve

this system of nonlinear equations. In order to do this, we

apply some Newton scheme which typically converges in a

few steps if we consider moderate time steps and pick up

the old solution at the old time step as the initial guess for

the Newton iteration.
The efficiency of our approach is further increased by an

adaptive grid refinement and coarsening strategy. Here, we

used a heuristic strategy which refines in interfacial regions

and coarsens in the pure phases.
In the case of the implicit Euler scheme, it is possible to

prove discrete counterparts of the mass conservation and

energy decay properties, i.e.,Z



Undx �
Z




Ihu0dx

and

Eh�Un� :�
Z




Ih	�Un� �AhrUn � rUn
� 	

dx

is nonincreasing (discrete Lyapunov property) and, thus,

gives reason for the discrete multiscale property of our

method
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Fig. 9. Control of particle shape. Overview image (left) and close-up

image (right).

Fig. 10. Effect of anisotropic elasticity. Early timestep (left); late timestep

(right).



Eh�Un�1� � Eh�Un� � � � � � Eh�U1� � Eh�Ihu0�:
Considering, in addition, either the directional term

which allows control of the particle shape or the elastic

stress term in the discrete potential, we proceed analo-

gously to the basic model, except in the elasticity case,

where we have to couple the diffusion equation with the

balance law for the elasticity. For details, we refer to [8].

8 ICONIC REPRESENTATION OF THE CLUSTERS

The clustering method described in Section 4 produces

clusters which emphasize the spatial coherence in the data.

In what follows concerning the iconic representation, we

focus on the case of flow data. Nevertheless, this exposition

might inspire the reader to think of different applications

along the same guidelines. For flow data, cluster interfaces

tend to be tangent to the streamlines of the underlying

vector field, so the clusters' shapes convey local insight in

the vector field direction. On the other hand, the physical

phase separation model presented in Section 2 produces

clusters which tend to be evenly distributed over the

domain of interest, 
.
Consequently, such clusters could be used as a starting

point for producing a simplified visualization of the

structure of the underlying vector field. For this, we

propose reducing each cluster to one curved arrow icon.

For every cluster, the size and spatial position of the icon

should reflect the size of the cluster, whereas the curvature

and arrow direction should be related to the vector field

inside the respective cluster. We have chosen to use the

curved arrow icons as they convey several information

levels in a simple, easy to understand manner [23] as

compared to other, more abstract icons.
The iconic visualization pipeline based on the multiscale

clustering proceeds as follows (see also Figs. 11 and 13).

First, the clusters C are extracted from the Cahn-Hilliard

equation solution u. Next, the skeletons of the clusters are

computed as sets of discrete points, as shown further in

Section 8.2. Next, the center points of the skeletons are

detected and used to construct the curved arrows by

streamline tracing, as discussed in Section 8.4. The reason

why we use such an apparently complicated method is that,

typically, the clusters are large, thin, often curved,

structures and streamline tracing is rather sensitive with

respect to the choice of the starting point. The rest of this

section explains the several steps in detail.

8.1 Cluster Extraction

First, we extract the clusters C from the scalar field u. For
this, we classify all the cells of the discretization of the field u
as cluster outside, border, or inside cells, based on the sign
of u�x�. Moreover, all border and inside cells belonging to a
given cluster are labeled by the cluster's ID as presented by,
e.g., Post et al. in [18].

8.2 Skeletonization

In the second step, clusters are reduced to their skeletons. By
skeleton, we understand here a set of points which, if
connected, produce a ªspineº which conveys the shape
information of the original cluster in a compact manner.

There are numerous skeletonization algorithms [11], [13].
However, many such algorithms produce skeletons with
complex, tree-like topologies. As we intend here to use the
skeletons only to produce the arrow icons, we prefer
simple, polyline-like topologies.

To produce such skeletons, we use a discrete method
based on the eikonal equation [22]. Given a boundary curve
ÿ in two dimensions (or a boundary surface in 3D) and a
function T such that T � 0 on ÿ, the eikonal equation is
jrT j � 1. If we regard ÿ as being the level set (e.g., isoline
or isosurface) of the function T , the above equation
describes the evolution in time of ÿ in normal direction to
ÿ, with constant speed equal to 1. In our case, ÿ coincides
with the previously detected cluster boundaries.

As presented by Sethian [22], we discretize the above
equation on the same grid used to solve the Cahn-Hilliard
equation, as follows (for the 2D case):

max�Dÿxij T ; 0�2 �min�D�xij T ; 0�2

�max�Dÿyij T ; 0�2 �min�D�yij T ; 0�2 � Fÿ2
ij ;

�8:1�

where the ij denotes the current grid point and the

operators D� and Dÿ denote the forward and backward

differences at that grid point. On a 2D regular grid of cell

size h, we have D�xij T � Ti�1;jÿTij
h and Dÿxij T � TijÿTiÿ1;j

h and

similarly for the y axis.
Equation (8.1) can be iteratively solved for every grid

point until the solution T converges. However, we use the
more efficient fast marching method, as described in [22].
The fast marching method proceeds by first tagging all grid
points as either Known (for the points on ÿ with known
value T � 0), Trial (all points that are one grid point away
from ÿ), and Far, for all other points.

The algorithm (Fig. 12) constructs the solution T
iteratively from the initially Known points with T � 0 on
the boundary ÿ. At each step, the solution T is constructed
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Fig. 11. Pipeline for iconic cluster visualization.



from the point with the smallest computed T value by
stepping away from the boundary in a downwind direction.
When a local extremum point of T is encountered, we freeze
that point and add it to the skeleton. The boundary is thus
marched inward until it collapses into a single line, namely
the skeleton points of the cluster ÿ.

To implement the algorithm efficiently, we use a heap
structure narrowband to maintain the set of Trial points. The
heap is maintained sorted in ascending order on the value
of T . Finding the Trial point with the smallest T value in
narrowband is thus O�1�. Inserting a new point in the heap is
O�logM� in the worst case for a heap of M points. Overall,
the fast marching method is O�NlogN� in the worst case for
a grid of N points [22]. Practically, our implementation of
the above algorithm completes in a few seconds on grids of
around 100,000 cells on an SGI O2 R5500 machine.

8.3 Reconnection and Center Detection

The skeletonization produces a set of usually disjoint
skeleton points (Fig. 13). The reason for this is that the
inward marching of the boundary described in the previous
section is accurate only up to the size of a grid cell.
However, the desired skeleton should be exactly one grid
cell thick. By looking at the extracted skeletons, we
estimated empirically that about 10 percent of the skeleton
points are not extracted by the fast marching method. To
remediate this problem, we reconnect the extracted disjoint
points in a postprocessing step based on a closest point

strategy in order to produce a polyline. For every cluster,
we then compute the center of its polyline and use it in the
next step of the pipeline.

8.4 Icon Construction

From the skeleton centers detected in the previous step,
streamlines are traced in the vector field until they reach the
borders of the clusters within which they evolve. Next,
curved arrow geometries are constructed around the
extracted streamlines. Finally, we discuss the application
of the continuous clustering method and the associated
curved arrow visualization to various vector fields.

The leftmost image in Fig. 13 shows a solution u�t; �� of
the modified Cahn-Hilliard process driven by a 3-vortex
vector field on a 64� 64 2D grid.

The thresholding of the continuous signal u into clusters
is shown in the second image of Fig. 13. The clusters
overlaid with the extracted skeleton points are shown in the
third image of Fig. 13. The rightmost image in Fig. 13
visualizes the vector field with streamline-based icons. The
curved arrows, initiated from the skeleton centers depicted
as small balls, are clipped by the borders of the clusters into
which they evolve.

A similar visualization is shown, for two different
clustering time instants, in Fig. 14. The multiscale feature
of the clustering is visible in the reduction of the arrow
count. An enhancement of the proposed curved arrow
visualization is shown in Fig. 15 by the addition of a spot
noise textured background. Finally, Fig. 16 shows the
proposed method applied on a circular 2D vortex.

9 DISCUSSION

In this section, we compare the presented continuous
clustering method with the discrete clustering method
presented in [23]. Similarly to the method presented here,
discrete clustering builds a vector field multiscale repre-
sentation by merging neighboring cells with similar vector
values. The time parameter of the Cahn-Hilliard equation is
equivalent to the iteration count in the bottom-up discrete
cluster merging. The continuous clustering method delivers
a continuous scale of successively coarser cluster sets. In
contrast, discrete clustering proceeds in distinct steps,
where two clusters are merged at each step.

Fig. 18 shows the discrete clustering of the two vector
fields discussed in the previous section. Regarding the
cluster shapes, the continuous clustering explicitly con-
strains the shape via the minimization of the interfacial
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Fig. 12. Fast marching method pseudocode.

Fig. 13. Clustering pipeline, from left to right: diffusion solution, clusters, skeleton points, curved arrow visualization. The underlying grid is of size

2572.



energy in order to obtain vector-aligned, smooth-shaped
clusters. In contrast, the discrete clustering does not
constrain the cluster shapes in any manner, assuming that
their growth to a ªnaturalº partition of the vector field can
be governed only by the intercluster similarity function.
This can lead however to ªbadlyº shaped (e.g., thin and
long) clusters, which are hard to represent by curved arrow
icons. In this respect, we see the controlling of the cluster
shape in the continuous clustering method as an advantage.
However, discrete clustering always merges the two most
resembling clusters, so the intrinsic symmetry of the
underlying vector field remains visible in the clustering
(see [23] for details). This may be seen as an advantage of
the discrete clustering method, see Fig. 18. Finally, the
shapes produced by the continuous clustering are not

constrained to simple convex ones, as in the method

presented by Heckel et al. [9]. We have applied the

continuous clustering method also to the visualization of

3D fields. Fig. 17 shows the visualization of a 3D circular

vortex field from two different viewpoints. The produced

arrow icons illustrate the clustering of the data in the center

of the domain, where the flow is dominated by a vertical

swirling motion, and along the domain's boundary, where

the flow mainly rotates in horizontal planes.
Finally we present an application of our approach for 2D

image processing, where we generate a scale of brush stroke

type representations of a greyscale image. We consider the

intensity of an image as a scalar function s : 
! IR. If we

intend to release brush strokes along regions of homo-

geneous values of the scalar quantity s, we need to

energetically favor interfaces which have a tangent space

locally perpendicular to rs. Hence, we choose a corre-

sponding quadratic form with
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Fig. 14. From left to right: the results of two successive time steps of the

clustering evolution with corresponding icons.

Fig. 15. Two different convective vector fields are depicted by the

clustering method. On the left, a fine representation is shown, whereas,

on the right, a resulting coarse representation is depicted.

Fig. 16. Visualization of a circular flow field by the clustering method.

Fig. 17. A 3D vectorfield is visualized by the clustering method.

Fig. 18. Discrete clustering of a 3-vortex field (left) and a circular vortex

field (right).

Fig. 19. Simple ball image (left) and brush-stroke representation (right).

Fig. 20. Multiscale brush-stroke representation of a grayscale Mona Lisa

image.



A :� B�rs�T � 0
0 Idnÿ1

� �
B�rs�;

where, for given r 2 IRn, the mapping B�r� 2 SO�n� is

again a coordinate rotation with B�r�r � krke1 and

1 > �0. Fig. 19 shows the application of out method on

a simple ball image in which the image gradient varies

smoothly. However, when the image is more complex, it

is harder to recognize the original image features in the

processed images (cf. Fig. 20).

10 CONCLUSIONS

We have presented a new multiscale clustering approach

which is based on a continuous model for clustering on

scientific data. The approach is motivated by well-known

physical clustering models describing the phase separation

and coarsening process in metal alloys. As a case study, we

focused on the clustering of flow fields. Future research

could be directed to:

. the improvement of the performance of the method
with respect to computing time, where paralleliza-
tion or implementation of the underlying diffusion
in texture hardware may help to overcome the
computational bottleneck (the clustering process
takesÐdepending on the size and resolution of the
dataÐfrom several minutes up to a couple of hours
on a fast workstation),

. the construction of further appropriate interfacial
energies for different applications,

. a detailed classification of the skeleton shapes and
the selection of appropriate icons, e.g., for saddle
points or vortices in flow fields.

APPENDIX

Here, we briefly outline the implementation of the

�-splitting scheme. Due to its strong stability properties, it

allows a much larger timesteps scheme and we have used it

in the current implementation of our clustering model. The

scheme divides any time step in three substeps (see Fig. 21).

In each substep, the linear operator is split up into two

parts, with coefficients � and 1ÿ �, respectively, one of

which is taken implicitly, the other explicitly. The nonlinear

term is taken implicitly in the middle substep only.
For the parameter � 2 �0:5; 1�, � � 1ÿ �, and � 2 �0; 0:5�,

the scheme reads as follows:

�
Mh � ���LhMÿ1

h Lh�A�
�

�Un��

�
�
Mh ÿ ���LhMÿ1

h Lh�A�
�

�Un ÿ ��Lh 0
ÿ

�Un
�
;�

Mh � ��1ÿ 2���LhMÿ1
h Lh�A�

�
�Un�1ÿ�

� �1ÿ 2���Lh 0
ÿ

�Un�1ÿ��
�
�
Mh ÿ ��1ÿ 2���LhMÿ1

h Lh�A�
�

�Un��;�
Mh � ���LhMÿ1

h Lh�A�
�

�Un�1

�
�
Mh ÿ ���LhMÿ1

h Lh�A�
�

�Un�1ÿ�

ÿ ��Lh 0
ÿ

�Un�1ÿ��:
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